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ABSTRACT

Neuroscientists study brain functional connectivity in order to obtain
a deeper understanding of how the brain functions. Current studies
are mainly based on analyzing the averaged brain connectivity of
a group (or groups) due to the high complexity of the collected
data in terms of dimensionality, variability, and volume. While it is
more desirable for the researchers to explore the potential variabil-
ity between individual subjects or groups, a data analysis solution
meeting this need is absent. In this paper, we present the design
and capabilities of such a visual analytics system, which enables
neuroscientists to visually compare the differences of brain networks
between individual subjects as well as group averages, to explore a
large dataset and examine sub-groups of participants that may not
have been expected a priori to be of interest, to review detailed infor-
mation as needed, and to manipulate the data and views to fit their
analytical needs with easy interactions. We demonstrate the utility
and strengths of this system with case studies using a representative
functional connectivity dataset.

Index Terms: I.3.8 [Computer Graphics]: Applications;

1 INTRODUCTION

In the field of cognitive neuroscience, resting-state functional con-
nectivity (RSFC) data are commonly adopted to draw inferences
about what type of cognitive processing is occurring as a result of
some recent experimental manipulation. RSFC data are obtained
by continuously acquiring blood-oxygen level dependent (BOLD)
images using functional magnetic resonance imaging (fMRI) tech-
nology while the subjects are instructed to do nothing except lie
in the machine with their eyes closed. Traditionally BOLD fMRI
images are used to infer levels of neural activity in specific regions
of the brain during a controlled task, but these levels of neural activ-
ity can also be used to measure the connectivity of different brain
regions during rest. Understanding what the brain is doing during
rest can re-shape our understanding of how the brain functions.

Studying RSFC of the brain helps neuroscientists learn how ac-
tivity in the brain results in complex cognition and behavior. In
general, neuroscience researchers design experimental conditions
to examine how the different conditions or tasks would influence
RSFC at a group-level (i.e., RSFC or other network connectivity
measures averaged across subjects within each group).

In a typical RSFC data analysis conducted by neuroscientists, a
set of commonly used statistical models, which are usually chosen
a priori, is applied to find correlation between different aspects of
the data. Due to the high complexity and dimensionality of the
data, correlation found at the group-level may not necessarily reflect

*e-mail:tfujiwara@ucdavis.edu
†e-mail:jkchou@ucdavis.edu
‡e-mail:amccullough@ucdavis.edu
§e-mail:cranganath@ucdavis.edu
¶e-mail:ma@cs.ucdavis.edu

patterns at the individual-level. Research [12] has revealed that
there exists immense variation in RSFC across individuals (and even
within individuals, across different scan sessions). It is oftentimes
an interest of researchers’ to examine exactly what factor(s) alter
RSFC.

As a result, it is essential that neuroscientists have the tools avail-
able to conduct a detailed and flexible examination of RSFC datasets,
including examination of data at the level of the individual. The
major requirement of such a tool is to let users quickly identify the
desired subsets of a large dataset, examine the average RSFC from
that subset, and compare the RSFC data from any individual to the
average RSFC of any desired sub-group. However, an effective tool
that serves such purposes in the field is still lacking.

In this paper, we present the design of an interactive visual an-
alytics system which aims to address the issues mentioned above.
Case studies were conducted to demonstrate the utility of different
functions of the system. We summarize the contributions of the sys-
tem in terms of how it can advance the way neuroscientists perform
data analysis and visualization in brain research as follows:

• The system enables comparison of patterns of brain region
activity correlations between a large collection of subjects and
between multiple scan sessions. In addition, the ability to
examine large RSFC datasets at multiple levels of analysis
(i.e., individuals, small or large groups) is available.

• The system integrates necessary visualization and analytical
methods to help users explore and find differences/similarities
of data based on information obtained from multiple aspects.

• The system provides a fully interactive interface to fulfill the
users’ often-changing analysis needs, such as flexibly incorpo-
rating or excluding additional factors from the analysis.

2 RELATED WORK

In the literature of brain functional connectivity, there are two gen-
eral directions of research. One is focused more on comparing the
differences of brain networks between individuals [11]. Finn et al.
described how the functional connectivity is unique by individual
and can be used to distinguish an individual subject from others [12].
Geerligs et al. compared the similarity of the subjects’ correlation
matrices and claimed that age could be a factor that introduces
differences of functional connectivity between groups of individu-
als [13]. Arian et al. evaluated the effect of acquisition parameters of
fMRI and analysis methods on individual differences by analyzing
similarities between each subject’s correlation matrix [1].

The other direction is to analyze the time varying aspect of the
brain functional connectivity. Allen et al. addressed how this as-
pect can unveil the flexibility in the functional coordination between
different neural systems [2]. Chalhoun et al. used the term of “chron-
nectome” to indicate the time varying connectivity of a brain and
reviewed several multivariate approaches for their effects on char-
acterizing brain function [9]. Hutchison et al. suggested that the
dynamic functional connectivity metrics may change in macroscopic
neural activity patterns underlying critical aspects of cognition and
behavior [20]. Deco et al. analyzed the variations in RSFC across



time [10]. They found that even at rest, the dynamic capabilities of
the brain are reflected in changes in connectivity between regions.

Given the large complexity and dimensionality of brain network
data, effective (visual) analytics tools and methods are essential to
provide scientists the ability to explore different aspects of their data
and to formulate new hypotheses that might lead to future research
possibilities. Margulies et al. [24] and Pfister et al. [26] provided
an overview of various visualization methods that have evolved for
anatomical and functional connectivity data.

Several tools have been developed to analyze and visualize the
functional connectivity data. Graph-Analysis Toolbox (GAT) pro-
vides graph analysis and visualization tools for structural and func-
tional brain networks [19]. LaPlante et al. developed Connectome
Visualization Utility (CVU) that can visualize the connectivity data
as a matrix and a node-link diagram on a circular layout or an
anatomical brain image [22]. Hassan et al. created a software called
EEGNET which can be used to analyze and visualize EEG and MEG
recordings in both 2D and 3D network views [16]. eConnectome
also provides the similar methods for EEG and MEG recordings [17].
Xia et. al. built BrainNet Viewer [32] which can display the 3D brain
network with some user-defined properties by coloring the brain sur-
face or nodes and links. Kruschwitz et al. presented GraphVar [21],
which integrates multiple softwares including BrainNet Viewer [32]
and the Brain Connectivity Toolbox [27], with a user-friendly GUI.
In Connectome Viewer Toolkit, Gerhard et al. proposed the Connec-
tome File Format which can be used to share the structure and meta
data of the connectome, so that the data can be easily handled and
visualized by their Python script editor [14]. The tools mentioned
above are mainly designed to support statistical analysis of func-
tional brain connectivity data, or to visualize data from one subject
or from a pre-determined group of subjects, instead of facilitating
the task of examining a large collection of functional connectivity
datasets in an efficient and user-friendly way. Moreover, the above
tools are generally not capable of easily incorporating additional in-
formation about the subjects or datasets, such as participant variables
(e.g., age), behavioral measures (e.g., task performance measures),
or physiological variables (e.g., hormone levels).

Previous work has attempted to use visualization methods to com-
pare the brain functional connectivity between subjects. Alper et al.
assessed the usability of their proposed augmented adjacency matrix
and node-link visualizations on the task of comparing brain connec-
tivity patterns [3]. Shi et al. took advantage of some feature selection
algorithms in the data mining field to extract the most discrimina-
tive and perceptually interpretable subgraph from the selected brain
networks [29]. Yang et al. proposed the blockwise brain networks
comparison [33]. They separated ROIs into six lobes and applied
their developed clustering algorithms within each lobe. These classi-
fied and clustered ROIs were visualized with NodeTrix [18] which
is a hybrid visualization combining node-link diagrams and matrix
representations. In these ways developed by Shi et al. [29] and Yang
et al. [33], the complexity of making visual comparisons between
brain networks can be greatly reduced. Bach et al. proposed visual-
izing time varying brain networks with a series of matrices as each
matrix represents a temporal snapshot of the brain [5]. Matrices
within neighboring time points are then piled together if their vari-
ance is smaller than a certain threshold. Bach et al. introduced Time
Curves [6] which employs multidimensional scaling (MDS) [31] to
embed both temporal and self-similarity information of a time vary-
ing brain network into the 2D space. However, it is still difficult for
the users to compare multiple subjects and explore possible reasons
for differences and similarities in network connectivity patterns.

To summarize the principle absence in existing software, the
existing tools [16, 17, 19, 21, 22, 32] used by neuroscientists are not
designed for simultaneous comparison or visualization of data at
the level of individuals and groups. Several existing works focused
on comparing between a few groups or examining time-varying

Figure 1: A brief overview of the dataset used in our study, including
the information of participant grouping, experimental tasks, and scan
sessions.

signals [3, 5, 6, 29, 33]. Compared with them, our system focuses
on enabling efficient comparison of a large collection of subjects
and multiple scan sessions while also enabling an efficient means to
examine subsets of the data as desired, and incorporating a variety
of subject variables along with a user-friendly interface.

3 DATASET AND DESIGN GOALS

In this section, we introduce the driving dataset and the design goals
of the system. We should note that the possibility to extend the
system to be used for analyzing brain connectivity data beyond the
data described here has also been considered when designing the
system.

3.1 Dataset Description
The dataset we used contains correlation matrices representing the
functional connectivity between brain regions during resting-state
fMRI (rs-fMRI) scans. Figure 1 provides a brief overview of the
dataset. The fMRI images were acquired from 50 subjects during
multiple phases of an experimental study of the effects of stress
on brain activity related to memory. After completing a memory
encoding task, the subjects were separated into two groups, a stressed
group and a control group. Before and after the stress (or control)
task, the subjects completed an rs-fMRI scan of 7 minutes and
10 seconds. During this time, the subjects were instructed to lie
silently in the machine with their eyes closed but were given no
additional instructions. On the following day, the subjects completed
two additional rs-fMRI scans, one before and one after a memory
retrieval task. Thus, there are 4 rs-fMRI scan sessions for each
subject: pre- and post-stress (or control) and pre- and post-retrieval.
More detailed information about the data is described as follows.

Brain regions — Each subject’s data was first pre-processed and
warped to fit into a standardized brain template. Then, activity esti-
mates from 137 anatomical regions of interest (ROI) were extracted
for each time point during the scan and the pairs of ROI activity
estimates were correlated across time points for further analysis.

Matrices — Each rs-fMRI scan is represented by a matrix con-
taining 137× 137 = 18769 correlation values. Because the corre-
lation values are duplicated within the matrix (i.e., matrices are
symmetrical about the diagonal), the actual number of unique corre-
lation values is: (18769−137)/2 = 9316. In addition, correlation
values are between −1.0 and 1.0.

Subjects — As is common practice in studies using fMRI, data
were excluded from individual subjects who exhibited more than
3mm total movement in any direction during any scan session. Ex-
clusion of those data is necessary because it is impossible to infer the
spatial origin of any signal measured after the subject moved. These
criteria resulted in exclusion of all rs-fMRI data for four subjects,
and of an additional three subjects from day 2, leaving the complete
dataset from 43 subjects, and day 1 data from 46 subjects.

Meta info — Additional data collected from each subject were
incorporated into the software package to examine if those vari-
ables influence RSFC. The information includes experimental group



(stress or control), hours slept, age, and cortisol response (i.e., a
physiological measure of stress).

The main research question the neuroscientists wish to answer
with this dataset is: How does acute stress alter the functional con-
nectivity of ROIs known to be involved in solidifying memory for
recent experience. The most direct way is to explore differences in
patterns of RSFC between the stress and control groups immediately
after the stress manipulation (day1-post scan). The neuroscientists
also wish to examine whether additional factors beyond the stress
manipulation contribute to (dis)similarities in patterns of RSFC
across all ROIs in the brain. Finally, the neuroscientists wish to
investigate how functional connectivity across all ROIs changes as a
function of the scan sessions, and whether the stress/control task or
other factors influence those differences in consistent ways.

3.2 Typical Analytics Flow and Design Goals
We next describe a typical analytics flow that researchers follow
when conducting brain connectivity analysis. We then present the
design goals of our system.

3.2.1 Typical Analytics Flow
Studies of RSFC typically involve a statistical comparison of con-
nectivity patterns between two groups of subjects, or comparison
of connectivity before and after an experimental manipulation. Re-
searchers normally study RSFC data at the group level while not
thoroughly examining data from individuals mainly because of the
high cost of time and the lack of effective comparison methods/tools.
Moreover, RSFC studies are typically conducted with fairly specific
hypotheses regarding how connectivity will differ between groups of
subjects or as a function of the manipulation. After pre-processing
rs-fMRI data, many researchers move directly to running statisti-
cal comparisons to test hypotheses about certain brain regions. In
order to communicate the results, researchers then typically create
a visualization such as a node-link diagram on a transparent brain
or a correlation matrix representing the group-level differences in
connectivity. However, a great deal of information is lost in such
a process — information regarding any individual subject’s RSFC
can be lost in group-level analyses, and examining such high dimen-
sional data solely with respect to one’s a priori hypotheses negates
the opportunity to thoroughly explore alternative reasons for RSFC
differences amongst the subjects.

3.2.2 Design Goals (DG)
Each design goal (DG) was determined based on iterative discussions
with the collaborating neuroscientists about how an effective visual
analytics system can serve or facilitate their analytics tasks and
needs.

DG1: The system should allow users to compare the differ-
ences in brain networks between several dozens of subjects. In
a typical neuroscience study, several dozens of subjects are recruited.
However, most of the time neuroscience researchers only consider
the averaged brain networks of different groups of subjects for com-
parison. The differences between each individual within the group
or across time are oftentimes neglected, and rarely examined thor-
oughly such as by incorporating other, non-MRI data to examine
other potential causes for network (dis)similarities. This is mainly
because the brain networks typically have high complexity and di-
mensionality and there existed no well-defined approach to support
such a task. The first goal is then to enable the capability for re-
searchers to compare a collection of individuals’ brain networks
with an expressive and intuitive manner.

DG2: The system should enable users to analyze the varia-
tions of the subjects’ brain networks over multiple sessions. In
general cases, the recruited subjects are asked to complete multiple
brain scans (i.e., sessions) at multiple time points so that researchers
can observe or study the change of functional brain networks after

certain tasks are performed. Therefore, it is important for the system
to support such a functionality.

DG3: The system should provide some visualization meth-
ods that the neuroscientists are already familiar with. Correla-
tion matrices and node-link graphs are two visualization methods
commonly used in neuroscience for presenting detailed functional
connectivity. A correlation matrix shows all pairs of correlations be-
tween any two brain subregions without occlusion while a node-link
diagram presents the relationships between brain subregions along
with the information of their actual positions. Including these two
visualizations in the system will allow the neuroscientists to exam-
ine detailed information about functional brain networks, to explore
functional connectivity data much more thoroughly and intuitively,
to verify research findings, and to communicate those findings with
visualizations.

DG4: The system should allow for the incorporation of other
data collected from participants into the analytical process. In
many cases, vast amounts of data beyond the subjects’ brain activi-
ties are also collected, such as demographics info (e.g., age, gender),
behavioral measures (e.g., task performance preceding or following
rs-fMRI data acquisition), or physiological measures (e.g., hormone
levels). Examining the influence of these variables on functional
connectivity may lead to new research findings or suggest new di-
rections for future research. As a result, the system should provide
an analytics method that allows the user to easily incorporate this
information.

DG5: The system should help users easily interact with the
data. Due to the complexity and dimensionality of RSFC data,
there is a wide variety of aspects that one could incorporate in the
visualization and analysis of the data. The analytical process may
proceed and change according to different patterns that emerge or
knowledge that is discovered when incorporating the variety of
subject information described above (DG4). It is essential to provide
an intuitive and fully interactive user interface so as to serve the
neuroscientists’ broad and ever-changing analytics needs.

4 SYSTEM DESCRIPTION

In order to meet the design goals, the system is developed to support
three major functionalities: 1) visualizing the differences between
subjects and sessions, 2) reviewing detailed information, and 3)
linked interactions between views. Details of each functionality
will be explained in the ensuing sections. The user interface of the
system is displayed in Figure 2, which consists of five components:
(a) settings panel, (b) MDS view, (c) correlation matrix view, (d) 3D
graph view, and (e) information view. The analytical flow of using
the system is summarized in Figure 3 as each step involves one or
more views/panel in the user interface. The three functionalities are
each associated with some of the blocks or texts shown in Figure 3
and are color-coded in blue, green, and red, respectively.

4.1 Visualizing the Differences between Individuals and
Sessions (DG1, DG2, DG4)

One of the major contributions of the system is to let users visually
compare the differences between individuals and sessions. To do so,
the user can first configure the parameters in the settings panel, and
then the visualized results will be displayed in the MDS view.

4.1.1 Settings Panel (Figure 2A)
In the settings panel, the user can first decide whether to start with
the “original” dataset or to begin with one of the “post-processed”
datasets. The “original” data includes correlation values of each
scan for each individual as a matrix described in Section 3.1. Using
the “original” dataset, we obtain two “post-processed” datasets by
calculating the difference of each individual’s data across multiple
sessions. Specifically, the ”Diff between days” dataset is derived
by calculating the difference of each individual’s pre- and post-task



Figure 2: The user interface of the system, which contains five components: (a) settings panel, (b) MDS view, (c) correlation matrix view, (d)
3D graph view, and (e) information view.

Figure 3: The analytical flow of using the system. Each step involves
one or more views/panel in the user interface.

scans between day 1 and day 2 while the ”Diff between pre and
post” dataset is obtained by computing the difference between each
individual’s pre- and post-task scans both in day 1 and day 2.

Then, the user can determine if he/she wants the data to be nor-
malized before analysis. The normalization can be used to serve the
purpose of avoiding excessive individual differences at the time of
scanning caused by fMRI. We provide two pre-defined normaliza-
tion methods in the system. Next, the user can choose from one of
the three distance metrics for the multidimensional scaling (MDS)
calculation. After that, several data filtering options are provided so
that the user can easily focus the analysis scope on a certain subset of
the data. Finally, the size of the nodes can be configured to represent
either some meta-information of the subjects or the uncertainty value
introduced by the MDS method.

4.1.2 MDS View (Figure 2B)

After setting up the parameters, the differences of brain scans be-
tween individuals, between different sessions, and between groups
are visualized in the MDS view. MDS is a popular method in mul-

tivariate analysis to show the (dis)similarities between objects in
low dimensional space. Our system applies classical MDS [31] in
2D target space. Classical MDS takes a distance matrix as an input
and calculates a desired position in 2D space for each object such
that between-object distances are preserved as much as possible. In
the MDS view, the brain scan of each subject in a scan session is
stored as a 18769×1 vector of correlation values and represented as
a node. To derive the distance between any two nodes, our system
supports three distance metrics: Euclidean, Pearson’s correlation,
and cosine distance. Although Euclidean distance is the most pop-
ular scale, it is easily affected by differences in the magnitudes of
the values. To better support the case of comparing (dis)similarity
of correlation matrices between different individuals, options to use
Pearson’s correlation and cosine distances are also included.

The position of a node is then determined by the MDS algorithm.
The attributes of a node are used to present other information of a
subject. The color of the nodes is used to show the group informa-
tion of the subject, which is normally collected in brain studies for
researchers to study the correlation or the disassociation within or
between certain groups of subjects. In our driving application, the
subjects are categorized into “controlled” and “stressed” groups and
are represented by green nodes and orange nodes, respectively. The
colors for categorical data in the MDS view and the 3D graph view
were selected from ColorBrewer [15], which provides color schemes
designed mainly for choropleth maps. We selected the colors from
the scheme which has enough saturation to recognize the difference
of colors in a small size of points in the views. Also, we ensured
that each view does not share the same colors to avoid misleading
users. The shape of the nodes, e.g. triangular or round, is used to
distinguish between averaged data and individual scans.

As the MDS results sometimes may contain cluttered regions,
zooming and panning of the view by using a mouse are supported
to display certain regions more clearly or to reduce overlapping of
nodes. In the case when the user wishes to focus the analysis on



(a) Session indicator (b) Uncertainty of node positions

Figure 4: Visual cues for presenting additional information. (a)
Session information indicated by the type of edges connecting two
nodes. (b) The uncertainty of node positions introduced by MDS.
The placement of nodes on the left have higher uncertainty values
than the nodes on the right side.

certain nodes (scans) of interest, our system provides mouse click
and lasso selection techniques for the user to select a subset of nodes
(scans). After the selection is done, the system offers the option to
re-calculate the MDS positions and refresh the MDS view using only
the selected nodes. Or, the user can decide to show the corresponding
correlation matrices as glyphs so as to obtain a quick examination
to the correlation matrices of the subjects of interest. The size of
the glyphs can be adjusted by the user as needed. For representing
the correlation values in a correlation matrix, we use the divergent
colormap proposed by Moreland [25], which is designed for general
use in scientific visualization based on theories of color perception.
The user also can find the detailed information of a subject and the
meta-information by hovering a mouse on a node.

There are two additional visual cues employed in the MDS view.
The user can decide whether to turn on/off either of them as desired.
First, in order to identify the different nodes representing the same
subject scanned in different sessions, the nodes of the same subject
are connected with (dashed) lines that have different lengths of inter-
vals to indicate the session sequence as shown in Figure 4(a). We
also considered using an arrow head or a color gradient. However,
both visual encodings would make the visualization more cluttered
because they both require thicker and more saturated lines for one
to recognize the difference between sessions. With the session indi-
cator, the user can quickly grasp the information of how much each
subject’s brain activity changed across multiple sessions. Depending
on the positions of the nodes, a session indicator line may overlap
with other node(s) that does not belong to the session sequence. To
identify which nodes actually represent the same subject, the con-
nected nodes and session indicator lines will be highlighted when
the mouse is hovered over a node.

The other visual cue is introduced to present the uncertainty of
the MDS result, as applying any kind of dimensionality reduction
method, including MDS, will inevitably produce uncertainty. Several
ways have been proposed to visualize the uncertainty produced by
dimensionality reduction methods [4, 23, 28]. The uncertainty value
is calculated in a similar way as in Schrek et al. [28]. The uncertainty
value of a node i can be computed as

unci =
√

∑
j∈P

(di j−d′i j)
2 (1)

where P, di j, d′i j denote the set of all nodes in the current view, the
distance between nodei and node j in the original dimension, and in
the MDS-mapped 2D space, respectively. di j and d′i j are first nor-

malized by dividing by the maximum distance in their corresponding
dimension. As in [28], we interpolate the uncertainty value at each
display pixel by calculating the weighted average value of neighbors
from the pixel and then visualize the value as a white background,
as shown in Figure 4(b). A brighter white color represents higher un-
certainty. This representation emphasizes areas where the distances
in the original dimension are not well preserved and raises user’s
awareness of potential issues of uncertainty in the dimensionality
reduction results. Alternatively, the user can map the uncertainty
value to reflect on the size of a node, as described in Section 4.1.1.
To reduce the uncertainty in such areas, the user can update the
visualized result by selecting a subset of nodes and then re-calculate
the MDS positions for only the selected nodes.

Dimensionality reduction techniques, including MDS, have been
widely studied and developed in recent decades, and are still an
active research topic [30]. We chose MDS for the following reasons.
First, the computation cost of MDS is low. Because we assume the
analytical process needs to be flexible and interactive, the recalcu-
lation of dimensionality reduction results is often needed and thus
needs to be relatively quick. The other reason is that MDS takes
distance matrices as its input, which allows us to conveniently apply
different types of distance metrics to measure the similarity between
data from multiple scans.

4.2 Review Detailed Information (DG3)
Correlation matrices and node-link diagrams are commonly used
in neuroscience for the purpose of helping neuroscientists inspect
the detailed brain network information of certain selected regions
and/or subjects.

4.2.1 Correlation Matrix View (Figure 2C)
A correlation matrix presents an overview of how the brain regions
correlate with each other. An effective matrix reordering and com-
munity detection algorithm can help reveal and identify modules
of brain regions that have higher correlation within-modules than
between-modules.

In our system, we provide complete-linkage clustering as a hierar-
chical clustering and the Louvain method [7]. Users are allowed to
define their own customized matrix order and/or assign the module
to which each node belongs to as needed. The number of modules
can also be set based on a selected number when applying the hierar-
chical clustering method, or based on a detected number of modules
with the Louvain method. The modules are indicated with colored
perimeters of rectangles in the correlation matrix. Values in the ma-
trix are colored with the divergent color proposed by Moreland [25]
as described in Section 4.1.2. Since the dataset includes 137 ROIs,
it is difficult to label all names of them in each row or column in
the limited space. Moreover, following line by line visually to iden-
tify an ROI corresponding to the value is not a reasonable solution.
The correlation matrix view supports mouse hovering to solve these
problems. The hovered element is highlighted and shows the names
of ROIs and the correlation value.

4.2.2 3D Graph View (Figure 2D)
A 3D node-link graph is provided as a complement to the correlation
matrix since useful information regarding the anatomical position of
the nodes is lost in the matrix visualization. Researchers commonly
use 3D node-link graphs to convey results of RSFC analysis, because
relationships between specific brain regions can be followed easily
in the 3D space. We allow interactions such as zooming and rotation
to help grasp the spatial positions more easily and correctly. In
addition, mouse hovering interaction shows the name of ROI for
further confirmation.

In a 3D graph view, two points are worth noting and should be
taken care of. One is the visual clutter caused by edge crossing.
Applying edge bundling techniques may help alleviate the clutter



(a) Edges colored by correlation val-
ues and without edge bundling

(b) Edges colored by modules and
with edge bundling

Figure 5: Comparison of two different edge coloring schemes and
with/without edge bundling for the same brain network. In (b),
the symmetry of the graph and the high connectivity between the
nodes in module 2 (represented by pink) can be seen more clearly as
compared to (a).

of the graph and improve the clarity of the graph structure. Our
system provides the user with the option to apply mean-shift edge
bundling [8]. The other notable point is the color representation
of the nodes/edges. By default, the colors of the nodes present the
module information described in Section 4.2.1 and correspond to
the colored perimeters of rectangles in Figure 2(c) while the colors
of edges present correlation values between nodes. Nonetheless,
the color of the edges can also be switched to reflect the module
information to emphasize the connections between or within the
modules. Figure 5 shows an example to demonstrate the effect of
using color and an edge bundling technique that can help emphasize
certain patterns in the graph. As can be seen in Figure 5(b), the
symmetricity of the graph and the high connectivity within the pink
group nodes are displayed more clearly as opposed to in Figure 5(a).

4.2.3 Information View (Figure 2E)
The information view shows the lists of detailed information. Users
can choose from one of the four options: 1) “Files” shows a file list of
subjects displayed in MDS view, 2) “Corr Matrix Orders” shows the
order of the regions displayed in the correlation matrix, 3) “Selected
Brain Regions” shows the list of brain regions selected/displayed in
the correlation matrix or 3D graph, 4) “Saved Images” shows the
images saved from the other three views for further comparative
analysis.

4.3 Linked Interactions between Views (DG5)
By observing the results displayed in each individual view, users
are able to gain insight from different aspects of the data. However,
sometimes neuroscientists would want to incorporate as much in-
formation as possible and examine the interplay of brain activity
patterns and different attributes or aspects of data. To fulfill such
a need, the system provides linked interactions between the views.
That is, the interactions applied in one of the views will reflect and
change the content in the other views accordingly.

4.3.1 Interactions from MDS View
In the MDS view, when a user selects one or a group of specific
nodes, the system allows the user to see or compare the detailed
information of the selected nodes in the three other views. If only
one node is selected, the user can see the correlation matrix and 3D
graph of the corresponding scan and the file name of the selected
scan will be highlighted. If two nodes are selected, the user can

choose to see the averaged or the subtracted correlation matrix (i.e.,
subtracting the values in one matrix from the other) and 3D graph.
For the cases where more than two nodes are selected, three options
are provided for comparing the selected scans: average, standard de-
viation, and maximum-to-minimum difference. The average method
can be used to identify which brain regions are more active. The
standard deviation method is suitable for presenting the similarity of
brain regions within the selected scans. The maximum-to-minimum
difference method shows the range of the correlation values in each
brain region. With the interactions described above, users are able
to intuitively compare the differences of brain networks in a more
flexible fashion.

4.3.2 Interactions from Correlation Matrix View and 3D
Graph View

In some cases, a user may want to focus on specific brain regions
or the brain regions that obtain a certain range of correlation values
for further analysis. Two interaction methods are provided in the
correlation matrix view. The user can use the sliders provided under
the correlation matrix to filter out the correlation values that are
not within a certain range. Or, the users can click-and-drag on the
correlation matrix to select certain brain regions. The correlation
matrices and the 3D graph view will be updated simultaneously after
either operation is applied. The matrix cells and the graph edges are
displayed only if their values are within the selected range. These
operations can help reduce clutter in the 3D graph view. In addition,
the user can also use the filtered or selected correlation values to
re-calculate the MDS results. It allows the user to verify if certain
brain regions are the reason that some subjects differ in overall
RSFC. When the user hovers the mouse over a certain matrix cell,
the corresponding nodes and link will be highlighted in the 3D graph
view to provide a reference of their anatomical positions. On the
other hand, if the user selects a node in the 3D graph, the row and
column corresponding to the selected node are highlighted in the
correlation matrix view with blue rectangles as shown in Figure 2(c).

4.3.3 Interactions with Information View
The information view displays detailed information about data se-
lected in the other views. It can also be used as an inverse selection
interface so that a user can directly find a specific data item (such as
a region or a subject) and then check its behavior in the other views.

5 CASE STUDIES

We present case studies on the dataset that motivated the design and
implementation of this system. Examples are demonstrated to show
the diverse utility of the system. We paraphrase the remarks made
by over a dozen collaborating neuroscientists after using the system.

5.1 Case Study 1: Comparison between Averages and
Individuals

Many studies of RSFC involve averaging RSFC correlation matrices
across all subjects in a group, then comparing the group-averaged
RSFC to the averaged RSFC of another group. However, it is well
established that there is a great deal of variability in RSFC across
individuals. The comparison of group averages conceals this vari-
ability across individuals, and thus may as well conceal interesting
aspects of a RSFC dataset. In this case study, we start by examining
the entire dataset in the MDS view. In particular, we inspect the
average RSFC for each group (stress, control) and each scan session
(day1-pre, day1-post, day2-pre, day2-post), as well as the average
RSFC across all participants (i.e., ignoring group membership) for
each scan session. This resulted in the twelve average matrices
displayed at the top of Figure 6(a). With a standard approach that ex-
amines the group differences in RSFC by comparing average RSFC
of each scan session for the two groups, one might simply draw a
conclusion that there is little difference in RSFC between the stress
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Figure 6: (a) An MDS view showing the overview of the differences between scans in the entire dataset, including the averaged scans. Averaged
scans tend to be similar to each other (top), while individual scans vary (bottom and left). Several scans are selected and their corresponding
correlation matrices are displayed for visual comparison. (b) The session indicator lines allow the user to visualized the self-stability or
similarity of RSFC matrices of each subject in multiple sessions.

and control groups. This result is apparent by a quick glance of the
twelve average RSFC matrices, as they all appear relatively similar
to one another.

However, as described above, RSFC is known to vary across indi-
viduals. A totally different pattern may be found if the differences
between every individual are taken into consideration. Using the
functions provided in the MDS view, one can easily see that there is
in fact great variability across individuals, no matter which group
the subjects belong to. For example, the user can highlight some
of the nodes and easily examine the correlation matrices of those
highlighted nodes to explore the individual differences. As can be
seen at the bottom left and right of Figure 6(a), correlation matrices
of several different subjects (from both control and stress groups) are
displayed. We can see that some control subjects’ RSFC matrices
are more similar to the RSFC matrices of stressed subjects than
to some other control subjects. The patterns and insight found in
Figure 6(a) suggest that it might be misleading to make comparisons
on group averages while ignoring individual variances as the two
approaches could lead to contradictory conclusions.

The rs-fMRI data are collected from each subject in multiple
sessions (e.g., before and after cognitive tasks). The representation
of the time indicator, as presented in Figure 4(a), can help identify
the self-stability or similarity of RSFC matrices of each subject
in multiple sessions. Figure 6(b) shows the MDS result when the
session indicator feature is turned on. We can see that the matrices
for any given individual tend to cluster together, showing the strong
influence of individual variation on RSFC similarity, regardless of
group membership (i.e., stress or control) or the timing of the scan
session (i.e., day 1 or day 2). In addition to the influence of individual
variation in RSFC, these patterns of (dis)similarity across days and
scan sessions reflect the influence of time on an individual’s RSFC.

The ability to easily examine individual RSFC matrices, in this case
from multiple scan sessions with the same subject, is useful for
better understanding the degree to which various factors influence
RSFC.

5.2 Case Study 2: Differences between Pre- and Post-
Task Scans

Researchers are often interested in examining the variation in RSFC
from before to after some cognitive tasks. The changes observed in
RSFC can be used to make inferences about the cognitive processes
involved in the tasks. In this case study, we present a representative
example that the neuroscientists used the system for examining
the changes in RSFC from before to after a task. The goal of this
example is to analyze the changes in RSFC of different subject
groups (i.e., control and stress) between the pre- and post-task scans
from day 1. We start by selecting “Difference Between Pre and Post”
and the data from only “day1” in the settings panel, and then perform
MDS calculation. The MDS view is shown in Figure 7(a) where
orange nodes tend to be placed on the left side of the screen while
green nodes are mostly placed on the right side of the screen. This
pattern suggests that the stress and control tasks induced changes in
RSFC in a different manner.

Because this method uses the correlation matrices that reflect
the difference in pre-post task RSFC, the average effect that an
experimental task induces on RSFC of multiple groups can easily
be identified. As can be seen in Figure 7(a) the averaged pre-post
correlation matrices for both control and stress groups are displayed
and show substantial differences from each other. We then explore
the distance between them in more detail by viewing the subtracted
correlation matrix in both matrix and 3D graph views to find out
which brain regions diverge the most between the two groups. After
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Figure 7: (a) An MDS view showing that the RSFC of the control and stress groups between the pre- and post-task scans in day 1 are changed
in a different manner. After setting up a relatively high threshold value, the brain regions where connectivity differentiates the two groups are
easily identified. The difference of the averaged pre-post correlation values for both groups is shown in the correlation matrix (b) and 3D graph
views (c). Note that the three perimeters shown in (b) and the nodes shown in (c) are colored based on the modularity information. Using
consistent color encoding in these two views provides easy reference for the user.

(a) (b)

Figure 8: (a) The maximum-to-minimum correlation matrix of sub-
jects in the stress group who showed a positive cortisol response.
(b) The maximum-to-minimum correlation matrix of subjects in the
stress group who did not exhibit a physiological stress response. (a)
tends to have higher values than (b) in general. The values in both
matrices are between 0 and 2 because the range of values in the
original matrices are −1 and 1.

setting up a relatively high threshold, we are able to see the brain
region pairs that have most different correlation values between the
control and stress groups, as shown in Figures 7(b) and (c). Some
further analysis can be possibly done by also examining how an
individual subject’s RSFC compares to the group averages.

5.3 Case Study 3: Influence of Stress-related Physiolog-
ical Measure on RSFC (Dis)similarity

Most rs-fMRI experiments are based on theories of cognition and
prior evidence of the effects of some experimental manipulation, and
thus are conducted with a set of clearly defined hypotheses in mind.
Nonetheless, it is often useful to examine the influence of additional
variables that were not thought a priori to influence RSFC. In the

experiment from which the current dataset was drawn, we collected
a physiological measure of stress, which is known as the cortisol
response, after subjects completed either a stress-induction task or a
control task. As stress can be induced by a variety of factors beyond
the experimental manipulation (i.e., the stress-induction task), it may
also be useful to examine RSFC based on the physiological measure
of stress rather than based solely on the experimental manipulation.
We would like to know whether RSFC differs for subjects in the
stress group who exhibited a positive cortisol response compared
to the subjects who completed the stress-induction task but did not
exhibit a physiological stress response.

We configure the system as following to conduct such an analysis.
First, we utilize the data filtering function in the settings panel to
select only scans of subjects in the stress group. Then, we set the
attribute filter as “Cort Delta” > 0 in the settings panel to include
only the scans of subjects who show positive cortisol response. 18
subjects (68 scans) meet this condition. After that, we derive the
maximum-to-minimum correlation matrix of the remaining scans,
as shown in Figure 8(a). Similarly, we can obtain the maximum-to-
minimum correlation matrix of those subjects who are in the stress
group but did not exhibit a physiological stress response (i.e., “Cort
Delta”≤ 0). 6 subjects (24 scans) are left with this condition. The
resulting correlation matrix can be seen in Figure 8(b). By com-
paring the two correlation matrices, we can see that the subjects
who exhibit positive cortisol response has a wider range of corre-
lation values in most brain regions than the subjects who did not
exhibit physiological stress response, suggesting that physiological
stress responses indeed influenced RSFC. This efficient approach
to exploring the influence of additional factors on RSFC can help
neuroscientists to specify hypotheses regarding a wide variety of
influences on RSFC. The researchers are then in a better position
to devise some more advanced statistical methods for testing those
hypotheses.

6 DISCUSSION

We discuss some potential issues of the MDS results, feedback and
comments received from our team of collaborating neuroscientists,
and the generalizability of our system.



6.1 Potential Issue with Dimensionality Reduction Meth-
ods

In order to present data of high dimensionality in a 2D screen, dimen-
sionality reduction methods are commonly applied to transform the
data in the high-dimensional space to a space of fewer dimensions.
In this process, it is inevitable for any dimensionality reduction
method to introduce distortion to the visualized data. As a result,
there might be some risk for the viewer to misinterpret the visu-
alization results. To address this issue, the system employs the
uncertainty visualization to raise the user’s awareness of uncertainty
in the presented visualization. In addition, if the user is interested
in seeing in more detail some part of the visualization that has high
uncertainty, the system also provides the functionality for the user
to select a subset of displayed nodes and then re-apply the MDS
calculation. Such a capability not only reduces the uncertainty of the
presented visualization, but also allows the user to focus the analysis
on nodes that are of particular interest.

6.2 Feedback from Users
Our collaborating neuroscientists provided positive feedback for
various aspects of the system. In general, they found the visualization
representations intuitive for them to understand and interpret. In
addition, they like the interactivity of the system, which allows
them not only to flexibly examine a considerably large and complex
dataset but also to quickly explore alternative hypotheses and see if a
certain attribute could have an important influence on the data. More
specifically, they appreciate two aspects of the system the most: 1)
the intuitive and inter-connected features of the multiple views, and
2) the capability of the system to allow them to view and compare
the data in multiple levels, i.e., from one or a few individuals to
a subset of individuals (as defined by any number of variables of
interest), and to pre-defined groups of individuals. The systems
used previously by the neuroscientists only allow for comparison
at the group-level. Our software provides them with the unique
ability to thoroughly examine RSFC data with respect to researchers’
ever-changing hypotheses regarding variables that may influence
patterns of functional connectivity. Below, we paraphrase some of
the researchers’ feedback about the three main views.

The MDS view is a user-friendly tool for examining the similarity
between RSFC datasets. Whether examining the similarity of scans
within an individual, similarity of experimentally-defined groups of
individuals, or similarity based on ranges of a continuous measure
such as the cortisol response, the MDS view allows the user to easily
select subsets of data and efficiently re-examine the data based on a
vast number of variables of interest.

The correlation matrix view shows RSFC data across the entire
brain and is familiar to most neuroscientists. They especially appre-
ciate the ease with which the user can display data from an individual
subject or from groups of scans or participants. The tool also allows
the user to specify the order of the regions in the correlation matrix,
which will facilitate the user’s interpretations.

The 3D graph view is another view that neuroscientists are fa-
miliar with, while it provides a means for quickly visualizing the
anatomical sources of the correlations presented in the correlation
matrix view. They appreciate the zoom and rotate functions of the
3D graph view, as well as the edge bundling feature. A general
feature they greatly appreciated was the inter-connections between
views, for example when a region is selected from the information
view (Figure 2(e)) and the corresponding node in the 3D graph view
is highlighted (Figure 2(d)), as well as the corresponding row and
column of the correlation matrix view (Figure 2(c)).

While our collaborating neuroscientists are pleased with the func-
tionality of the system, they have provided several suggestions to
improve the system. First, they wish to obtain more flexibility on
the mapping of the visual elements in the MDS view. Currently, the
size, shape and color of a node and different patterns of an edge are

each used to present some pre-defined aspect/attribute of the data.
The neuroscientists suggest that in some cases it would be helpful if
some of the mappings can be switched according to their analytical
needs. For example, when the analysis only involves individual
scans but not averaged scans, the shape of the nodes can then be
used to represent some other aspect of the data.

They also made some suggestions on the 3D graph visualization.
One comment is to give users the option to view only one of the
hemispheres (right or left) at a time, or to view both. This would
help reduce clutter, because in most cases, the connectivity within
each hemisphere is often very similar.

Finally, the neuroscientists think that with some added features
the system could be very useful for them to prepare materials for
teaching and communicating results with other researchers. While
the system currently supports a “save image” function for each view,
it is desired to have the ability to save those images with a much
higher resolution (300 dpi or higher) as well as to add annotations on
the saved images. They also requested the function to extract a video
showing the 3D graph with different scales and angles according to
the user’s interaction.

6.3 Implications for Future Usage of the System
We have demonstrated several uses, based on one specific dataset,
to show the strengths and utility of the system. The dataset used
is representative of many rs-fMRI datasets, as it contains typically
measured data including correlations between ROIs, ROI location
information, data collected from subjects in different groups and
data collected in multiple scan sessions for each subject, as well
as demographic and physiological data for each subject. We be-
lieve that the components currently designed in this system can be
easily generalized to apply to other rs-fMRI datasets. In brief, the
visualization tool requires a simple input of correlation matrices,
which is a form of data highly familiar to any RSFC researcher.
Upon startup, the system allows the user to define unique aspects
of their data structure (such as the number of unique scan sessions
per individual, membership in experimental groups, and individuals’
physiological variables). Thus, the system provides the foundation
of a uniquely optimizable platform for visualization of rs-fMRI data
from many different types of experiments. The user-friendly inter-
face provides familiar views of the data, in correlation matrices and
3D graph views, as well as a novel visualization that allows the
user to efficiently examine how RSFC data groups according to a
variety of variables of interest. By facilitating quick visualization of
RSFC similarity according to a variety of factors, the MDS view is
particularly useful for the data-driven examination of interactions of
factors influencing RSFC, thus providing a means for researchers to
examine the influence of a multitude of factors not predicted a priori
to influence their results. The three views are interactive and coordi-
nated in their displays, and are further supported by the user-friendly
settings panel and information view. We have already reviewed
several different datasets and have started to work on extending our
system for use with general RSFC datasets in future work.

7 CONCLUSION

In this paper, we present a visual analytics design that meets the
growing needs of brain researchers to extract meaning from data
of high dimensionality and high volume. The resulting system
integrates data manipulation methods, visualization designs, and
interaction techniques to support visualization and analysis tasks on
brain functional connectivity data. The case studies conducted to-
gether with our collaborating neuroscientists show that the combined
functionalities of the system greatly enhance their ability to gain new
insights into their data. The capabilities the system offers can help
accelerate brain research by allowing researchers to easily perceive
and understand the (dis)similarities between individuals (and groups
of individuals), brain regions (and networks of brain regions), and



scan sessions (whether before and after an experimental task, or on
different days). As brain research continues to advance with growing
ambition and data collection capabilities, interactive visual analytics
systems like ours will play a more crucial role in the overall research
process.
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