
An Interactive Visual Analysis Tool for Cellular
Behavior Studies Using Large Collections of

Microscopy Videos
Chuan Wang, Jia-Kai Chou, Kwan-Liu Ma

Arpad Karsai, Ying X Liu, Evgeny Ogorodnik, Victoria Tran, Gang-Yu Liu
University of California, Davis

Abstract—This paper presents an interactive visual analysis
tool created for studying collections of video data. Our driving
application is cellular behavior studies that use microscopy
imaging methods. The studies routinely generate large amounts
of videos with various experimental conditions. It is very time-
consuming for the scientists to watch each video and manually ex-
tract features-of-interest for further comparative and quantitative
studies. We show that with our visualization tool, scientists are
now able to conveniently observe, select and isolate, and compare
and analyze the cellular behaviors from different perspectives
within one framework. The tremendous time and effort saved
allow scientist to focus on deriving the actual meaning behind
certain observed behaviors.

I. INTRODUCTION

In many fields of life and physical sciences, studying cell
dynamics and function using microscopes is an essential task.
As the microscope technology continues to advance, over
a study images can be generated at increasing resolution
and rate, resulting in vast amounts of data to be processed
and analyzed. The previous manual way of processing and
examining the image data is no longer feasible. A new set of
tools is needed.

This paper presents such a tool, which we call “CellVis”,
whose design is driven by the need of analyzing large collec-
tions of video data generated from controlled experiments con-
ducted by biochemical scientists for studying time-evolving
patterns of cellular behaviors. Such experiments are usually
conducted under different stimuli and experimental conditions
for comparative studies, and recorded optically in the form of
videos with different types of microscopies. Using a collection
of such videos, scientists try to understand cellular behaviors
against particular types of stimuli. They can observe and
quantify the changing geometric properties of the cell, such as
size and shape, as a function of time. In addition, they want to
compare the behaviors under different stimuli captured by dif-
ferent videos. However, playing back and visually comparing
a series of videos is a very time-consuming task as scientists
often need to compare the experiment results frame by frame
and also switch back and forth between different videos.
Furthermore, human memory is not designed to remember
observed behaviors in a long video sequence especially after
watching several videos. Figure 1 shows three diverse example
images that are sampled and cropped from the videos used in
this study.

Although some microscope image analysis tools, like im-
ageJ [1], have been widely used because of their rich function-
alities, the tasks of quantifying desired features and facilitating
comparative studies cannot be directly and efficiently accom-
plished with those individual tools/libraries. For example, due
to the low contrast of images from bright field microscope,
these tools often fail to accurately detect cell contours, and
certainly do not offer functions for handling features specific
to a particular domain of study. While a fully automatic
video processing system is desired, from time to time, domain
experts need to assist in the process of validating, tuning, and
analysis, which suggests the need of an interactive user inter-
face. Without our tool, scientists may have to manually direct
and verify the feature detection process for each individual
video including the corresponding quantitative analysis tasks.
This is neither scalable nor reliable.

The premise of our design is the ability to generate a visual
summarization of cell behaviors from a large collection of
videos under study. Through an interactive visual interface, the
user may select a cell of interest from a video, in which such
a cell is detected and tracked over the whole time sequence.
The extracted cell’s behaviors in terms of geometric properties
of interest are quantified and recorded. After all videos are
processed, the user can examine a visual summarization of
the recorded cell behaviors for all videos and watch individual
videos for validation as needed through the same interactive
interface.

Fig. 1: Examples of subregions from input videos.
Since cell behaviors are characterized by multiple features,

it is impossible for the scientists to manually look over these
time-evolving features individually and mentally correlate
them. Information visualization can become helpful here by
visually summarizing the multidimensional information not
only for each video but also for all the videos in a study. The
visualization presents selected aspects of each tracked cell into



a visual thumbnail, and all visual thumbnails are organized in
a spreadsheet-like layout to provide an overview of the whole
set of experimental results. The interface allows scientists to
perform operations such as filtering by feature parameters,
time, and videos, as well as sorting by parameter values.

In summary, we have made tangible contributions to sci-
entific studies involving large collections of video data by
creating:

• A visualization design that effectively summarizes mult-
dimensional information extracted from a large collection
of videos to enable scientists to conveniently study dy-
namics of cellular features change over time.

• An interactive visualization system that allows scientists
to quickly review and verify their hypotheses in cell
studies by comparing cell behaviors both qualitatively and
quantitatively.

• A set of case studies that we conducted together with
domain scientists from biochemistry to demonstrate the
effectiveness of our design.

While in this paper we have only demonstrated our design
and the resulting tool on microscopy data for the study of cell
dynamics, by adding domain-specific feature detection func-
tions, such an interactive visualization system is applicable to
Big video data in general.

II. RELATED WORK

We reviewed two areas related to our work as follows.
A. Cell Video Analysis

There has been intensive research effort dedicated to cellular
behavior studies using microscopy videos. Meijering et al. [2]
and Held et al. [3] discussed cellular feature analysis algo-
rithms based on fluorescence microscopy images, while Ali et
al. [4], Selinummi et al. [5], and Buggenthin et al. [6] studied
bright-field microscopy images. Previous studies show that
correlating fluorescence staining and bright-field images [5],
or leveraging both in-focus and de-focus images [4] may help
address the low contrast problem when analyzing cell images.
Research effort has also been made to leverage machine
learning techniques for recognizing cells [7]. For example,
Kanade et al. [8] and Mualla et al. [9] utilized local image
features descriptor to track the overall migration patterns of
multiple cells over time. Most of the methods mentioned
above have certain limitations that either cell images have
to be specially produced or require a large number of pre-
labeled datasets. There has been no universal solution for
cell recognition/tracking. More importantly, the presentation
of their analysis results are mostly annotations on the cell
images or the visual summarization of single features. When
analyzing a large amounts of video data is required, providing
a global summarization for all cellular features will greatly
facilitate the analytical process.

B. Video Summarization/Visualization

One goal of video visualization is to assist users to intel-
ligently reason with their data without having to repeatedly

inspect the video. Video visualizations can be seen in various
forms, it could be another video, an animation, a collection
of images, or even a single composited image [10]. Here
we categorize previous video visualization approaches into
keyframe-based techniques and abstraction-based techniques
and review the literatures respectively.

Keyframe-based techniques detect keyframes from videos
and arrange those frames in order. The Stained-Glass Visual-
ization [11] lays out critical regions and blend them together
into a condensed visual summary. Kang et al. [12] presented a
space-time montage where multiple portions of the video are
blended in the same frame. Goldman et al. [13] summarized
videos by rearranging selected frames and annotate them with
outlines, arrows and text in a storyboard. Bartoli et al. [14]
and Correa et al. [15] created panorama-style summaries that
naturally blends the foreground motion to a stitched back-
ground. Schoeffmann et al. [16] presented a video navigation
technique that interactively provides abstract visualization of
video contents.

These techniques trim the content of videos and emphasize
more on the presentation of featuring frames. As a result, they
are less often used in scientific studies, such as in cellular
behavior visualization, where scientists usually would expect
to see the continuously changing pattern of cell feature(s) to
be visualized and analyzed.

Abstraction-based techniques, on the other hand, summarize
attributes from video streams. Study subjects are not explic-
itly depicted from videos. Instead, featuring information are
summarized and visualized. For general video visualization,
Daniel et al. [17] and Chen et al. [18] extracted features from
video streams and visualized them as volumes. Similarly, Sun
et al. [19] extracted the trajectory of cells and visualized them
as time-vary volumes. Hoferlin et al. [20] and Parry et al. [21]
presented hierarchical event visualizations that depict shots
and notates scoring in snooker videos.

Nonetheless, comparing videos with videos in a quantitative
illustration can be difficult. Duffy et al. [22] developed a
glyph-based microscopy video summarization technique that
conveys both spatial and temporal contexts in one single
graph. However, the method described in [22] cannot be
used to convey continuous measurements of multiple features
simultaneously, as one of the main objectives in this work is
to visualize the change of multi-dimensional data over time.

III. CELLVIS

In this section, we first introduce the design goals of the
CellVis system. Then, a brief overview of CellVis is described.
After that, we present the visualizations for representing each
of the time-evolving cellular features. Finally, the supported
data manipulations in CellVis are explained in detail.

A. Design Goals

We have interviewed domain scientists to understand what
data they wish to explore within each cellular experiment video
as well as how they would compare the data across all videos.



Based on their feedbacks we derived the following design
goals (DG) for designing CellVis.
DG1 CellVis should provide a highly expressive visual

summary of cellular features evolve over time. As
each experimental video records the subsequent behavior
of a cell, it can be time-consuming for the scientists to
observe the cellular behavior by inspecting the video
frames one at a time, let alone there could be multiple
features of interest that the scientists may want to com-
pare together. The goal is to provide a visualization that
summarizes the whole cellular evolution process into
one single view so that scientists can quickly identify
the correlation and trend of features within a video.

DG2 CellVis should allow easy comparison of the visual
summaries across a collection of videos. As mentioned
in DG1, scientists may have multiple features of interest.
Besides, they may also want to compare those features
of interest across multiple videos. Frequently, scientists
conduct experiments by setting up different parameters
and study how the cellular features would change ac-
cordingly. Therefore, it is important for the system to
allows users to make such comparison.

DG3 CellVis should provide the interactivity and flexibility
for data manipulation. Given the variety of cellular fea-
tures as well as the experimental parameters, scientists
usually need to arrange or organize the data in a certain
way to verify their hypothesis. Sometimes, they may
also want to explore more possibility to discover new
patterns from a different aspect. For achieving such goal,
it is crucial to support interactive operations for data
manipulation in the system, e.g. sorting and filtering.

Fig. 2: The system flow chart of CellVis.

B. System Overview

Figure 2 shows the system flow chart of CellVis, which
contains two modules: data pre-processing module and vi-
sualization module. In the data pre-processing module, the
parameters scientists used while conducting the experiments
are first saved into files. Since some findings of the cellular
behavior study described in this paper have not yet been
published, we have chosen to use a generic term, i.e. stimulus,

for replacing those sensitive experimental parameters hereafter.
Then, we applied computer vision techniques for the purpose
of cell recognition and tracking. Note that the cell recognition
and tracking are done automatically. However, sometimes
there may be multiple cells recorded in one video while not all
of them are of interest. By default, we assign the cell of interest
(COI) according to its location, shape, and size. Furthermore,
we also provide a post-verification interface so that the users
have the option to choose another COI for each video. After
deciding the COIs of the videos, we can derive the time-
evolving cellular features of the COIs, such as area, perimeter,
bleb count/size. Finally, the derived features along with the
saved experimental parameters are fed into the visualization
module.

Figure 3 shows the user interface of the visualization
module, which consists of two panels, a control panel (right,
marked A through E) and a viewing panel (left, marked F). The
viewing panel displays the visualizations with a spreadsheet-
like layout while providing the flexibility to interactively
explore/arrange the data/visualizations in different aspects by
configuring in the control panel, for example: changing layout
or filter out unwanted data. We will explain more details about
the two modules of CellVis in the following sections.

C. Data Pre-processing (DG1)

In order to provide an expressive visual summary of cellular
features from each cell video, we first pre-process the cell
video and transform the celluar features to quantitative values.
There have been abundant existing studies dedicated to auto-
mate the process of cell shape segmentation and cell tracking,
machine learning-based approaches [23] [24] [25] [26] and
image-based methods [27] [28] are usually adopted. We apply
similar algorithms such as texture filtering and random walker
to implement the function, The focus of this paper is not to
invent new algorithm to improve the accuracy of the detection,
we therefore will not discuss such topic further in this paper.
Once the cell in the video can be detected and tracked, we
can easily derive several features of interest easily, such as
area and perimeter of the cell, cell bleb count and size, cell
shape, cell migration trajectory. To confirm the validity of
the derived features, we sampled a few dozen frames from
videos under different experimental parameters and asked the
domain experts to undergo a visual inspection to verify if the
detected results match with the real case. The domain experts
have approved that the detection accuracy to be acceptable for
further analysis.

D. Visualization of Cellular Features (DG1 and DG2)

In this section, we discuss how we summarize the time-
evolving cellular features as visualizations and how the visu-
alizations created from a collection of videos can be compared
with each other.

1) Area and Perimeter: For visualizing numerical time-
series data such as cell area and cell perimeter, it is straightfor-
ward to present such type of data using bar charts with one axis
representing time while another axis indicating the numerical



(a) (b)

Fig. 3: The user interface of visualization module of CellVis. It consists of two panels: controal panel (right, marked A
through E) and viewing panel (left, marked F). In the viewing panel, visualizations of cellular features from multiple videos
are displayed with a spreadsheet-like layout. Five data manipulations are provided in the control panel that allows users to
interactively explore the data in different aspects.

value. Although the concept of time is usually presented
horizontally (for example: from left to right represents from
the beginnig to the end), in CellVis we choose to arrange
the timeline in a radial fashion. The reasons of making such
decision are two-fold. First, it is easier to control the size of
the resulting visualizations to be the same if we normalize
the timeline by setting the longest video to form a full circle.
Second, the radial layout is more compact, which saves us
more screen space when we want to put multiple visualizations
side by side for comparison.

Figure 4a shows the visual summary of the perimeter of a
cell evolve over time. Each perimeter value in one time step
is represented by the height of a bar. The bars are arranged in
clock-wise order starting from 12 o’clock. Cellular perimeters
from all cells are normalized to the possible range, i.e. from
10 µm to 80 µm, which are provided by domain scientists. As
can be seen in Figure 4a, the perimeter value drops severely at
the beginning, which means the cell has encountered a sudden
shape change. After that, the perimeter of the cell then became
more stablized.

The time-evolving area of a cell is also visualized in a same
fashion. As displayed in Figure 4b, we can see that the cell
size decreases significantly at the beginning. After a certain
period of time, another significant size shrinking of the cell
occurs again.

2) Bleb: As cell bleb may be a domain-specific feature in
cell studies, here we give a brief introduction: Cell blebbing is

one of the most dynamic cellular process characterized by con-
tinuously expanding and retracting spherical membrane blebs.
Blebbing is part of many different and fundamental cellular
processes such as cell division, migration and programmed
cell death. Cell blebbing is driven by the continuous polymer-
ization, disruption and re-polymerization of actin cytoskeleton
and powered by Myosin motor proteins which together cause
continuous rearrangement of the cortical actin cytoskeleton.

To summarize the blebbing behavior of a cell, we also adopt
the radial bar chart visualization as for area and perimeter.
However, the domain scientists would want to compare two
attributes of cell blebs, which are number of blebs and bleb
size, together at the same time. A minor adjustment can be
made so that the two attributes can be fitted into the same
type of visualization. We use the height of a bar to represent
the number of blebs that a cell has at a certain time point,
while the size of each bleb is presented by color. To be more
specific, each bar is segmented into equally sized sticks while
each stick represents a bleb. The color of the stick then encodes
the size of the bleb where darker color is used to refer to a
bigger bleb size. As the example shown in Figure 4c, at the
beginning there are fewer but bigger blebs. As time proceeds,
there are many smaller blebs emerge while bigger blebs are
retracting and expanding periodically but never expand to as
big as they are at the beginning.



3) Trajectory: The trajectory of a cell’s migration can be
described as the movement of the cell centroid over time. As
the trajectory contains spatial information, instead of using the
radial bar chart visualization, we plot the trajectory of a cell
on to a 2D Cartesian coordinate system. We start by setting
the cell centroid extracted from the first video frame to be
the origin point of the coordinate system. Then for every time
point after, the derived cell centroid is drawn as a dot located
at its relative position to the first centroid. The color of the
dots encodes time information where light blue refers to the
beginning of the video, and as time of the video proceeds,
the color of the dot will become darker and darker. Figure 4d
demenstrates an example that the cell stays around the original
location for a little while, and it starts to migrate towards it
left after a certain point of time.

4) Spreadsheet Layout: As one of the design goals of
CellVis is to support easy comparison between visualizations
and across multiple videos. We adopt a spreadsheet layout
for displaying visualizations of different features and of mul-
tiple videos. The visualization spreadsheet layout has been
demonstrated to not only allow users to view large collec-
tions of visualizations simultaneously but also enable them to
easily conduction visual exploration and comparison through
multiple representations of different data sets [29] [30]. The
viewing panel of CellVis, marked F in in Figure 3a, shows
an example of our spreadsheet layout, where each individual
visualization (for example, the one marked in G) is scaled to
have the same size as the others to support direct and side-
by-side comparison. In addition, each video’s corresponding
experimental parameters are annotated on the top-right corner
in red. Note that by default the visualizations of one video
is arranged vertically in the order of Perimeter, Bleb, and
Tra jectory. Users are given the flexibility to change the order
or even apply other data manipulations to view the visualiza-
tions in different aspects. The supported data manipulations
will be explained in more detail in the next section.

E. Data Manipulation (DG3)

To allow scientists explore their video data in different
perspectives, CellVis provides several data manipulations that
would re-arrange or re-organize the layout in the viewing panel
instantly and accordingly. As can be seen in Figure 3b, the
control panel supports the following operations: A) Visual-
ization Size Control, B) Time Segment Selection, C) Feature
Selection, D) Parameter Sorting, and E) Data Filtering.

1) Visualization Size Control: The slider bar marked A in
Figure 3b control the universal size of visualizations displayed
in the viewing panel. The layout of the visualizations will be
changed simultaneously when the user scrolls the slider bar.
When the visualizations are set to a smaller size, users are able
to compare more videos at the same time, trends or anomalies
of data may be identified at a glance. On the other hand, if the
size of the visualizations is set to be bigger, then the users can
see the detail of each individual visualization more clearly.

2) Time Segment Selection: The slider bars shown in region
B of Figure 3b provide users the functionality to select and

(a) Perimeter (b) Area

(c) Bleb Count & Size (d) Trajectory

Fig. 4: Visualizations of time-evolving cellular features.

visualize only a specific time period of the videos. Sometimes,
scientists would want to focus on the cellular features change
during a specific time range. For example, scientists may give
the cell a certain stimulus at a certain time point and want to
observe the cell behavior afterwards. After a new time segment
is selected, the visualizations will update at the same time
by only considering the data derived from the assigned time
period. Note that the starting frame number can only be set to
be smaller than the ending frame number.

3) Feature Selection: Region C in Figure 3b lets to user
decide which cellular features to be displayed in the viewing
panel. By default, the viewing panel displays all visualizations
so users can compare all features comprehensively. However,
in some cases not all features are of interest, keeping unneces-
sary visualizations in the viewing panel may result in unwanted
distraction. The feature selection panel allows scientist to focus
on only one or a subset of features and help them find trends
or patterns with respect to those selected features.

4) Parameter Sorting: To help scientists discover the effect
of setting certain experimental parameters, a sorting panel, as
marked D in Figure 3b, provides the functionality to sort the
visualizations according to their correpsonding experimental
parameters. In this way, scientists are able to identify if it
would make the cells behave differently when applying differ-
ent levels of stimulus to the cells. Or, they might find some
trend of cellular feature change under certain environmental
condition.

5) Data Filtering: The last data manipulation provided
in CellVis is data filtering. As can be seen in region E of
Figure 3b, all video file names are listed as the same displaying
order in the viewing panel (from left to right, from top to



bottome). By selecting/deselecting the check-box in front of a
file name, user can show/hide the corresponding visualizations
of the video in the viewing panel. This functionality is espe-
cially helpful when scientists find the parameter setup for some
videos incorrect or when some cells behave so awkwardly and
can be identified as outliers. Excluding the visualizations of
those videos from the viewing panel would allow scientist stay
focused only on those valid/interested videos.

IV. CASE STUDIES

In this section, we demonstrate several real use cases
of CellVis. The domain scientists we collaborate with have
specifically indicated that the following case studies indeed
show the powerfulness of CellVis as it helped them perform
the tasks that cannot be done in the past. In the following
case studies, we paraphrase the remarks made by scientists
after using the CellVis system.

(a) (b) (c)

Fig. 5: Visualizations of different cell blebbing behaviors.
(a) Visualization of a cell’s blebbing behavior when a lower
magnitude of certain stimulus is applied. (b) Visualization of
a cell’s blebbing behavior when a higher magnitude of certain
stimulus is applied. (c) Visualization of a cell’s blebbing
behavior when increasing the efficiency of a certain stimulus
applied to the cell.

A. Case study 1

First case study shows that scientists can quickly identify
several cells that different blebbing behavior of cells can be
identified by only looking at the bleb visualization charts.
Figure 5 shows visualizations of blebbing of three cells which
exhibit the most visually different behavior among more than
30 cells. The visualized data suggest that the magnitude of
applied stimulus directly correlates with the blebbing behavior.
It was found that larger magnitude of stimulus trigger more
intense continuous bleb formation (Figure 5b) than smaller
stimuls (Figure 5a). Figure 5a shows that the largest blebs
appears predominantly in a short period after the trigger but
this cell exhibit larger and higher number of blebs along the
entire blebbing process compared to cells which was triggered
with 2.2 times lower stimulus (Figure 5b).

B. Case study 2

Continued from case study 1, it was found that increasing
the efficiency of the stimulus the blebbing behavior can be
significantly altered. Figure 5cshows that the different stimulus
triggers larger blebs compared to the previous ones (Figure 5a

(a) Stimulus applied on the cell body.

(b) Stimulus applied on the periphery of the cell.

Fig. 6: Visualizations of cell trajectory (first column), cell
area (second column), and cell perimeter (third column) when
a certain stimulus is applied on (a) the cell body, or (b) the
periphery of the cell.

and Figure 5b). The chart also give an insight to the dynamics
of blebbing behavior showing that while the bleb size signifi-
cantly increased the number of the blebs remained unchanged.

The scientists found the bleb visualization useful as it
gives them a clear summary of the dynamic blebbing of
individual cells. It allows for comparison of cell behavior and
reveals trends and patterns among cells which were subject to
different magnitude of stimuli. In the presented case study, the
visualization data suggest that the extent of the damage to the
cortical actin cytoskeleton of cells, which correlates with the
magnitude of the stimulus, can be the factor what determines
the blebbing behavior.

C. Case study 3

In this case study, scientists investigated if the location
of stimuli applied to a cell can result in different cellular
responses. The hypothesis was that imposing stimulus on the
cell body or the periphery of elongated cells can result in
different cellular responses.

By comparing the visualizations of cell perimeter and cell
area, two different behaviors can be clearly distinguished.
Stimulus applied to the cell body cause significant morpho-
logical change which involves a rapid decrease of the length
of cell perimeter and cell area as the elongated cell shrinks
and its flat morphology change to spherical shape (Figure 6a).
In contrast, a cell with a stimulus applied on the periphery
shows increased cell motility without any significant change
in cell shape or size (Figure 6b).

The scientists agreed that the plots of cell trajectory give
them a straightforward visual summary of the activated motil-
ity of the cells, which depicts the direction and extent of a
cells locomotion. Moreover, they concluded that arranging the
visualizations of the three parameters together (cell perimeter,
cell area, and trajectory) allows them to describe and summa-
rize all of the captured dynamic events.



D. Case study 4
Visualization of cell trajectories can give an insight to

the dynamics of cellular motility. The plots can reveal the
speed, direction and overall intensity of motility and can help
to find trends among cells which were subjects of different
experimental conditions. Figure 7 provides a comparison of the
cell trajectories where experiments were conducted under two
different temperature conditions: room temperature, shown in
Figure 7(a), and 37 degree Celcius, shown in Figure 7(b).
The cell trajectory visualization revealed suggesting that a
gradually increasing stimulus can activate the cellular motility
in room temperature experiments (Figure 7a). In contrast with
this finding, the same experiments carried out in a 37 degree
Celcius environment shows that the cells exhibit a higher
degree of the cell motility compared to room temperature
regardless of the magnitude of the stimul (Figure 7b) and this
motility cannot be increased further.

The current results suggest that the cells have a more
pronounced response to the applied stimulus at room tem-
perature compared to 37 degree Celsius. The initial very slow
motility at room temperature is caused by the lower enzymatic
activity of Myosin motor proteins. The increasing motility
upon increasing stimulus is likely due to the higher number of
activated of Myosin. This observation suggest that the stimulus
can activate cell signaling cascades which regulates Myosin
activity and therefore cellular motility. The data collected at
37 degree Celsius suggest that either minimum level stimulus
cause maximal activation of cellular motility or the signaling
cascades are already activated at physiological conditions and
their activity cannot be further increased.

The visualized data pointed out that further control exper-
iments has to be done in order to find out the relationship
between the temperature and activation of cell motility by the
stimulus.

(a) Visualizations of cell trajectory under
room temperature environment.

(a) Visualizations of cell trajectory under
37 degree Celcius environment.

Fig. 7: Comparing the cell trajectories under different envi-
ronmental conditions: (a) room temperature, and (b) 37 degree
Celcius.

E. Case study 5

In this case study, we show how CellVis can help scientists
promptly identify if a cell is alive or dead. To differentiate
between live and dead cells with bright field microscope with-
out using any specific viability test requires longer observation
of suspicious cells. Apoptotic cells can be in different stages
of programmed cell death (apoptosis) and they often have
similar morphology to dead cells. However, apoptotic cells
still have function and can recover from apoptosis, therefore
identifying them and distinguishing them from dead cells can
be important.

By looking at the visualizations of cell trajectory, perimeter,
and area together enables scientists to identify dead cells
at a glance. As it can be seen in Figure 8, the dead cell
features negligible changes in cell perimeter, area and motility
compared to healthy or dying apoptotic cells. The scientists
also noted that the visualizations can potentially be used to
track the viability of cells if specific viability tests cannot be
carried out.

Visualizations of cell trajectory.

Visualizations of cell area.

Visualizations of cell perimeter.
(a) Healthy cell (b) Apoptotic cell (c) Dead cell

Fig. 8: Comparison of cell trajectory (first row), cell area
(second row) and cell perimeter (third row) between healthy
cell (first column), dying apoptotic cell (second column), and
dead (third column) cell.

V. SUPPLEMENTAL MATERIALS

We provide one of the cell videos that we used in this study
for the reviewers to see what the video and cellular features
are like. Please refer to the following link: http://nauhc.github.
io/CellGUI/. We should also note that the length of each video
used in our study is usually more than 30 minutes, and some

http://nauhc.github.io/CellGUI/
http://nauhc.github.io/CellGUI/


may last for a few hours. Therefore, a video file size may be
in the range of gigabytes. We have chosen to upload a shorter
video and also made the video play 30 times faster to keep its
size small.

VI. CONCLUSION

With CellVis, we have demonstrated the value of using
information visualization to organize and present multidimen-
sional, quantitative information extracted from large video
data. Through an interactive user interface, users can ef-
fectively browse the information and perform comparative
studies. In the case studies on microscope video data, CellVis
helped the domain scientists not only gain quick insights about
cell dynamics in response to external stimuli but also study
their data much more comprehensively with reduced time
and effort. As biomedical imaging capabilities continue to
improve, their studies are expected to routinely produce larger
volumes of higher resolution images. A tool like CellVis,
designed to address big data analytics challenges, will allow
the scientists to work more efficiently and more quickly
accomplish their research goals.

REFERENCES

[1] C. a. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to
ImageJ: 25 years of image analysis,” Nature Methods, vol. 9, no. 7, pp.
671–675, 2012.

[2] E. Meijering, O. Dzyubachyk, I. Smal, and W. A. van Cappellen,
“Tracking in cell and developmental biology,” Seminars in Cell and
Developmental Biology, vol. 20, no. 8, pp. 894 – 902, 2009, imaging in
Cell and Developmental Biology Planar Cell Polarity.

[3] M. Held, M. H. A. Schmitz, B. Fischer, T. Walter, B. Neumann, M. H.
Olma, M. Peter, J. Ellenberg, and D. W. Gerlich, “Cellcognition: time-
resolved phenotype annotation in high-throughput live cell imaging,”
Nature Methods, Aug. 2010.

[4] R. Ali, M. Gooding, T. Szilagyi, B. Vojnovic, M. Christlieb, and
M. Brady, “Automatic segmentation of adherent biological cell bound-
aries and nuclei from brightfield microscopy images,” Mach. Vision
Appl., vol. 23, no. 4, pp. 607–621, Jul. 2012.

[5] J. Selinummi, P. Ruusuvuori, I. Podolsky, A. Ozinsky, E. Gold, O. Yli-
Harja, A. Aderem, and I. Shmulevich, “Bright field microscopy as
an alternative to whole cell fluorescence in automated analysis of
macrophage images,” PLoS ONE, vol. 4, p. e7497, 10 2009.

[6] F. Buggenthin, C. Marr, M. Schwarzfischer, P. S. Hoppe, O. Hilsenbeck,
T. Schroeder, and F. J. Theis, “An automatic method for robust and fast
cell detection in bright field images from high-throughput microscopy.”
BMC Bioinformatics, vol. 14, p. 297, 2013.

[7] X. Long, W. L. Cleveland, and Y. L. Yao, “A new preprocessing
approach for cell recognition,” Trans. Info. Tech. Biomed., vol. 9, no. 3,
pp. 407–412, Sep. 2005.

[8] T. Kanade, Z. Yin, R. Bise, S. Huh, S. E. Eom, M. Sandbothe, and
M. Chen, “Cell image analysis: Algorithms, system and applications,”
in IEEE Workshop on Applications of Computer Vision, January 2011.

[9] F. Mualla, S. Scholl, B. Sommerfeldt, A. Maier, and J. Hornegger,
“Automatic cell detection in bright-field microscope images using sift,
random forests, and hierarchical clustering,” Medical Imaging, IEEE
Transactions on, vol. 32, no. 12, pp. 2274–2286, Dec 2013.

[10] R. Borgo, M. Chen, B. Daubney, E. Grundy, G. Heidemann, B. Höferlin,
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