
ScalaRMotivation QueryPlan Wrap-up 1/26

Dynamic Reduction of Query Result Sets
for Interactive Visualization

Leilani Battle (MIT)
Remco Chang (Tufts)

Michael Stonebraker (MIT)

ScalaRMotivation QueryPlan Wrap-up 2/26

Context

Visualization System

Database

query

result

ScalaRMotivation QueryPlan Wrap-up 3/26

Problems with Most VIS Systems

• Scalability
– Most InfoVis systems assume that memory stay in-core
– Out-of-core systems assume locality and/or structure in

data (e.g. grid).
– Database-driven systems leverage operations specific to

the application (e.g. column-store for business analytics)

• Over-plotting
– Makes visualizations unreadable
– Waste of time/resources

ScalaRMotivation QueryPlan Wrap-up 4/26

The Problem We Want to Solve

Visualization on a
Commodity Hardware

Large Data in a
Data Warehouse

ScalaRMotivation QueryPlan Wrap-up 5/26

Approach: Trading Accuracy For Speed

• In the Vis community
– Common practice, e.g.

• Based on Data: Elmqvist and Fekete (TVCG, ’10)
• Based on Display: Jerding and Stasko (TVCG, ‘98)

• In the Database community
– Less common, e.g.

• Stratified Sampling: Chaudhuri et al. (TOD, ’07)
• (BlinkDB) Bounded Errors and Response Time: Agarwal et al.

(Eurosys ‘13)
• Online Aggregation: Hellerstein et al. (SIGMOD ‘97), Fisher et

al. (CHI ‘12)

ScalaRMotivation QueryPlan Wrap-up 6/26

Our Solution: Resolution Reduction

Visualization System

Database

Resolution Reduction Layer

query

queryplan query

queryplan result

modified query

reduced result

ScalaRMotivation QueryPlan Wrap-up 7/26

Our Implementation: ScalaR

• Back-end database: SciDB
– An array-based database for scientific data

• Front-end visualization: javascript + D3
• Middleware:

– Named ScalaR
– Written as a web-server plugin
– “Traps” queries from the front-end and

communicates with the back-end

ScalaRMotivation QueryPlan Wrap-up 8/26

Query Plan and Query Optimizer

• (Almost) All database systems have a query
compiler
– Responsible for parsing, interpreting, and generating

an efficient execution plan for the query

• Query optimizer
– Responsible for improving query performance based

on (pre-computed) meta data.
– Designed to be super fast
– Continues to be an active area of DB research

ScalaRMotivation QueryPlan Wrap-up 9/26

Example Query Plan / Optimizer

• Given a database with two tables:
dept (dno, floor)
emp (name, age, sal, dno)

• Consider the following SQL query:

select name, floor
from employ, dept
where employ.dno = dept.dno
and employ.sal > 100k

Example taken from “Query Optimization” by Ioannidis, 1997

ScalaRMotivation QueryPlan Wrap-up 10/26

Possible Query Plans

ScalaRMotivation QueryPlan Wrap-up 11/26

Cost of the Query

• For a database with 100,000 employees
(stored across 20,000 page files), the three
query plans can have significantly different
execution time (in 1997):
– T1: <1 sec
– T2: >1 hour
– T3: ~1 day

ScalaRMotivation QueryPlan Wrap-up 12/26

Query Plan Exposed – SQL EXPLAIN

• The “EXPLAIN” command
– Exposes (some of) the computed results from the

Query Optimization process
– Not in SQL-92
– The results are DBMS-specific

• Usage:
explain select * from myTable;

ScalaRMotivation QueryPlan Wrap-up 13/26

Example EXPLAIN Output from SciDB

• Example SciDB the output of (a query similar to)
Explain SELECT * FROM earthquake

[("[pPlan]:
schema earthquake
<datetime:datetime NULL DEFAULT null,
magnitude:double NULL DEFAULT null,
latitude:double NULL DEFAULT null,
longitude:double NULL DEFAULT null>
[x=1:6381,6381,0,y=1:6543,6543,0]
bound start {1, 1} end {6381, 6543}
density 1 cells 41750883 chunks 1
est_bytes 7.97442e+09
")]

The four attributes in the table
‘earthquake’

Notes that the dimensions of this
array (table) is 6381x6543

This query will touch data
elements from (1, 1) to (6381,
6543), totaling 41,750,833 cells

Estimated size of the returned
data is 7.97442e+09 bytes
(~8GB)

ScalaRMotivation QueryPlan Wrap-up 14/26

Other Examples

• Oracle 11g Release 1 (11.1)

ScalaRMotivation QueryPlan Wrap-up 15/26

Other Examples

• MySQL 5.0

ScalaRMotivation QueryPlan Wrap-up 16/26

Other Examples

• PostgreSQL 7.3.4

ScalaRMotivation QueryPlan Wrap-up 17/26

ScalaR with Query Plan

• The front-end tells ScalaR its desired
resolution
– Can be based on the literal resolution of the

visualization (number of pixels)
– Or desired data size

• Based on the query plan, ScalaR chooses one
of three strategies to reduce results from the
query

ScalaRMotivation QueryPlan Wrap-up 18/26

Reduction Strategies in ScalaR

• Aggregation:
– In SciDB, this operation is carried out as

regrid (scale_factorX, scale_factorY)

• Sampling
– In SciDB, uniform sampling is carried out as

bernoulli (query, percentage, randseed)

• Filtering
– Currently, the filtering criteria is user specified

where (clause)

ScalaRMotivation QueryPlan Wrap-up 19/26

Example

• The user launches the visualization, which
shows the overview of the data
– Resulting in launching the query:

select latitude, longitude from quake

– As shown earlier, this results in over 41 million
values

ScalaRMotivation QueryPlan Wrap-up 20/26

Example

• Based on the user’s resolution, using
Aggregation, this query is modified as:

select avg(latitude), avg(longitude)
from (select latitude, longitude

from quake)
regrid 32, 33

• Using Sampling, this query looks like:
select latitude, longitude
from bernoulli (select latitude, longitude

from quake), 0.327, 1)

ScalaRMotivation QueryPlan Wrap-up 21/26

Strategies for Real Time DB Visualization

ScalaRMotivation QueryPlan Wrap-up 22/26

Using SciDB

ScalaRMotivation QueryPlan Wrap-up 23/26

Performance Results
• Dataset: NASA MODIS
• Size: 2.7 Billion data

points
• Storage: 209GB in

database (85GB
compressed), across
673,380 SciDB chunks

• Baseline:
select * from ndsil

ScalaRMotivation QueryPlan Wrap-up 24/26

Benefits of ScalaR

• Flexible!
– Works on all visualizations and (almost) all databases

• As long as the database has an EXPLAIN function
• No Learning Curve!

– Developers can just write regular SQL queries, and
– do not have to be aware of the architecture

• Adaptive!
– Easily swap in a different DBMS engine, different visualization,

or different rules / abilities in ScalaR.
• Efficient!

– The reduction strategy can be based on perceptual constraint
(resolution) or data constraint (size)

ScalaRMotivation QueryPlan Wrap-up 25/26

Discussion

• Efficient operations are still DB dependent
– SciDB: good for array-based scientific data

• Efficient aggregation (e.g., “regrid”)
– OLAP: good for structured multidimensional data

• Efficient orientation (e.g., “pivot”)
– Column-Store: good for business analytics

• Efficient attribute computation (e.g., “avg (column1)”)
– Tuples (NoSQL), Associative (network), etc., Multi-value DB

(non-1NF, no-joins), etc.
• How does ScalaR know which operation to use?

– One possible way is to “train” ScalaR first – give it a set of
query logs (workload) to test the efficiency of different
strategies

ScalaRMotivation QueryPlan Wrap-up 26/26

Thank you!!

Leilani Battle (MIT) leibatt@mit.edu
Remco Chang (Tufts) remco@cs.tufts.edu
Mike Stonebraker (MIT) stonebraker@csail.mit.edu

Questions?

	Dynamic Reduction of Query Result Sets �for Interactive Visualization
	Context
	Problems with Most VIS Systems
	The Problem We Want to Solve
	Approach: Trading Accuracy For Speed
	Our Solution: Resolution Reduction
	Our Implementation: ScalaR
	Query Plan and Query Optimizer
	Example Query Plan / Optimizer
	Possible Query Plans
	Cost of the Query
	Query Plan Exposed – SQL EXPLAIN
	Example EXPLAIN Output from SciDB
	Other Examples
	Other Examples
	Other Examples
	ScalaR with Query Plan
	Reduction Strategies in ScalaR
	Example
	Example
	Strategies for Real Time DB Visualization
	Using SciDB
	Performance Results
	Benefits of ScalaR
	Discussion
	Thank you!!

