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Problems with Most VIS Systems

• Scalability
– Most InfoVis systems assume that memory stay in-core
– Out-of-core systems assume locality and/or structure in 

data (e.g. grid).
– Database-driven systems leverage operations specific to 

the application (e.g. column-store for business analytics)

• Over-plotting
– Makes visualizations unreadable
– Waste of time/resources
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The Problem We Want to Solve

Visualization on a
Commodity Hardware

Large Data in a
Data Warehouse
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Approach: Trading Accuracy For Speed

• In the Vis community
– Common practice, e.g.

• Based on Data: Elmqvist and Fekete (TVCG, ’10)
• Based on Display: Jerding and Stasko (TVCG, ‘98)

• In the Database community
– Less common, e.g.

• Stratified Sampling: Chaudhuri et al. (TOD, ’07)
• (BlinkDB) Bounded Errors and Response Time: Agarwal et al. 

(Eurosys ‘13)
• Online Aggregation: Hellerstein et al. (SIGMOD ‘97), Fisher et 

al. (CHI ‘12)
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Our Solution: Resolution Reduction
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Our Implementation: ScalaR

• Back-end database: SciDB
– An array-based database for scientific data

• Front-end visualization: javascript + D3
• Middleware: 

– Named ScalaR
– Written as a web-server plugin
– “Traps” queries from the front-end and 

communicates with the back-end
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Query Plan and Query Optimizer

• (Almost) All database systems have a query 
compiler
– Responsible for parsing, interpreting, and generating 

an efficient execution plan for the query

• Query optimizer
– Responsible for improving query performance based 

on (pre-computed) meta data.
– Designed to be super fast
– Continues to be an active area of DB research
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Example Query Plan / Optimizer

• Given a database with two tables:
dept (dno, floor) 
emp (name, age, sal, dno)

• Consider the following SQL query:

select name, floor
from employ, dept
where employ.dno = dept.dno
and employ.sal > 100k

Example taken from “Query Optimization” by Ioannidis, 1997
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Possible Query Plans



ScalaRMotivation QueryPlan Wrap-up 11/26

Cost of the Query

• For a database with 100,000 employees 
(stored across 20,000 page files), the three 
query plans can have significantly different 
execution time (in 1997):
– T1: <1 sec
– T2: >1 hour
– T3: ~1 day
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Query Plan Exposed – SQL EXPLAIN

• The “EXPLAIN” command
– Exposes (some of) the computed results from the 

Query Optimization process
– Not in SQL-92
– The results are DBMS-specific

• Usage:
explain select * from myTable;
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Example EXPLAIN Output from SciDB

• Example SciDB the output of (a query similar to) 
Explain SELECT * FROM earthquake 

[("[pPlan]:
schema earthquake
<datetime:datetime NULL DEFAULT null,
magnitude:double NULL DEFAULT null,
latitude:double NULL DEFAULT null,
longitude:double NULL DEFAULT null>
[x=1:6381,6381,0,y=1:6543,6543,0]
bound start {1, 1} end {6381, 6543}
density 1 cells 41750883 chunks 1
est_bytes 7.97442e+09
")]

The four attributes in the table 
‘earthquake’

Notes that the dimensions of this 
array (table) is 6381x6543

This query will touch data 
elements from (1, 1) to (6381, 
6543), totaling 41,750,833 cells

Estimated size of the returned 
data is 7.97442e+09 bytes 
(~8GB)
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Other Examples

• Oracle 11g Release 1 (11.1)
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Other Examples

• MySQL 5.0
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Other Examples

• PostgreSQL 7.3.4
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ScalaR with Query Plan

• The front-end tells ScalaR its desired 
resolution
– Can be based on the literal resolution of the 

visualization (number of pixels)
– Or desired data size

• Based on the query plan, ScalaR chooses one 
of three strategies to reduce results from the 
query
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Reduction Strategies in ScalaR

• Aggregation:
– In SciDB, this operation is carried out as 

regrid (scale_factorX, scale_factorY)

• Sampling 
– In SciDB, uniform sampling is carried out as

bernoulli (query, percentage, randseed)

• Filtering 
– Currently, the filtering criteria is user specified 

where (clause)



ScalaRMotivation QueryPlan Wrap-up 19/26

Example

• The user launches the visualization, which 
shows the overview of the data
– Resulting in launching the query:

select latitude, longitude from quake

– As shown earlier, this results in over 41 million 
values
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Example

• Based on the user’s resolution, using 
Aggregation, this query is modified as:

select avg(latitude), avg(longitude)
from (select latitude, longitude 

from quake)
regrid 32, 33

• Using Sampling, this query looks like:
select latitude, longitude
from bernoulli (select latitude, longitude 

from quake), 0.327, 1)
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Strategies for Real Time DB Visualization
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Using SciDB
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Performance Results
• Dataset: NASA MODIS 
• Size: 2.7 Billion data 

points
• Storage: 209GB in 

database (85GB 
compressed), across 
673,380 SciDB chunks

• Baseline: 
select * from ndsil
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Benefits of ScalaR

• Flexible!
– Works on all visualizations and (almost) all databases 

• As long as the database has an EXPLAIN function
• No Learning Curve!

– Developers can just write regular SQL queries, and
– do not have to be aware of the architecture

• Adaptive!
– Easily swap in a different DBMS engine, different visualization, 

or different rules / abilities in ScalaR.
• Efficient!

– The reduction strategy can be based on perceptual constraint 
(resolution) or data constraint (size)
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Discussion

• Efficient operations are still DB dependent
– SciDB: good for array-based scientific data

• Efficient aggregation (e.g., “regrid”)
– OLAP: good for structured multidimensional data

• Efficient orientation (e.g., “pivot”)
– Column-Store: good for business analytics

• Efficient attribute computation (e.g., “avg (column1)”)
– Tuples (NoSQL), Associative (network), etc., Multi-value DB 

(non-1NF, no-joins), etc.
• How does ScalaR know which operation to use?

– One possible way is to “train” ScalaR first – give it a set of 
query logs (workload) to test the efficiency of different 
strategies
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Thank you!!

Leilani Battle (MIT)  leibatt@mit.edu
Remco Chang (Tufts)   remco@cs.tufts.edu
Mike Stonebraker (MIT)  stonebraker@csail.mit.edu

Questions?
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